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In a porous bed, in which the percolation is determined by Darey's 
equation, the well bottom pressures and flow rates are given by the 
linear relations 

Po-- P i =  ~ alj q~ (i = t, 2, ..., n). (1) 
j=l 

Here, P0 is the pressure on the pool supply contour, Pi and qi are the 
bottom pressure and flow rate of the i-th well, n is the number of wells 
in the area, and aij are influence coefficients. Knowing these, we 
can determine the total extraction of liquid, the distribution of well 
flow rates, the degree of extraction of oil, the yield of deposit water, 
the optimum flooding percentage, etc. 

The influence coefficients depend on the pool geometry, the loca- 
tion of the wells, and the physical parameters of the bed and the sat- 
urating liquid. At present they are determined on an electrical model 
of the bed, whose construction is a rather laborious affair, especially 
in the case of three-dimensional beds. Moreover, this method does 
not always yield values of the influence coefficients with the neces- 
sary accuracy, since the model does not completely reflect the com- 
plex local conditions. Consequently, direct methods of determining 
these coefficients directly in the field are of practical importance. 
One such method is proposed below. 

Considering Eq. (1), we see that if a certain well, for example, 
the j-th, is "instantaneously" shut down, after a sufficiently long in- 
terval of time the pressure in the i-th well will increase by an amount 
Api = aijqj, the case i = j not being excluded. However, in the transi- 
tion period, when a steady state has not yet been established, the latter 
quantity will be a variable. Let it vary according to the law 

6pi(t) : aii(t)?i ' (2) 

in which aij(t ) is an unknown but perfectly definite function depending 
on the same factors as the influence coefficient aij. Comparing Eq. 
(2) with the previous equation, in the limit we have 

a~i(c~ ) = a~j, 6p~(~) = Apl. 

Now let 5qj(t) be some variation of the flow rate in the j- th well, 
and 6pi(t) the corresponding change in pressure in the i-th well; then 
the relation between them is established via the function aij(t) intro- 
duced in (2) by means of the Duhamel formula 

(3) 6p~ (t) = ~ ~ ai ~ (t - -  z) 6% (~) dz . 
o 

Obviously, when 6qi = qi = const Eqs. (2) and (3) coincide. 
We will describe as a perturbation of the stationary state of a well 

(state of rest or steady operation) a change in the pressure and flow 
rate for which the latter, after a certain interval whose duration is not 
limited, assume their original values. For idle wells such a perturba- 
tion may be produced by briefly starting up and shutting down opera- 
tion, for operating wells by a brief shutdown, after which the welt is 
started up again in order to restore completely the original operating 
conditions, etc. 

Let 6pi(t ) and 8qj(t) denote the deviations of the bottom pressure 
and flow rate from the original values in the presence of such a per- 
turbation. Then by definition the integrals 

~ 6pi (t) dt, i~6qj (t) dt 
u o 

have a finite value. 

Subjecting (3) to a Laplace transformation, we obtain 

8pi* (~') 
~,~j (s) __ 8qj* (,,) (4) 

o 
Using the limit relations of operational calculus [1], we have 

lim sa..* ts) == aii (~.) -=aij, 

co co 

I !m ~ , *  (s) = ~ 8~; (t) dr .  l i m f p i * ( s ) =  6p~(t) dt, s o " .~ 

Then passing to the limit as s ~ 0 in Eq. (4) and using the above 
equations, we obtain the following expression for the influence coeffi- 
cients: 

6q5 �9 (5) aij = ( l  6pi(t) dt (t) dt) 
o o 

This equation opens up the possibility of determining the influence 
coefficients on the basis of a direct hydrodynamic investigation of the 
well. 

Equation (5) is suitable for determining the influence coefficients 
not only of porous beds but also of porous-fissured beds in the sense of 
[2], since the basic premise--the validity of Darcy's law-st i l l  applies. 
However, unless corrections are introduced, Eq. (5) is not suitable 
for beds characterized by a nonlinear percolation regime. 

We now present two examples of the practical application of Eq. 
(5). 

Example 1. Under steady-state conditions a well produces qi = 
= 206 m2]day = 2400 cmS/sec. In order to obtain 6Pi(t ) and 6qi(t ) it is 
shut down for 70 min, then started up again. The corresponding dy- 
namics of the variation in pressure and flow rate are shown in Fig. l ,  
from which it is clear that 5Pi(t ) = 0 after only t = l l0  rain. The flow 
rate, however, is much slower in recoverIng and reaches the original 
value after four hours. From Fig. 1 we find 

co r 
g 6pi(t) d t=16.59. t05 atsec,  ~ 6q i ( t )d t=~9 . tO~cm s. 
o o 

The self-influence coefficient aii = 0.024044 at sec/cm s. 
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In this specific case a knowledge of ail enables us to find the steady- 
state depression, i . e . ,  the deviation of the steady-state value of the 
bottom pressure from the nominal static value, from the formula Api = 

= aiiq i. 
Using this formula, we find Api = 0.024044. 2400 = fi7.7 at. 
Direct measurements during an extended shutdown of the well (5 hr) 

on the next day showed that Api = 59 at. The error is clearly sma11. 
This example shows how it is possible to determine the steady-state 

and hence the formational (nominal static) pressure during a brief shut- 
down of the well, without serious pumping losses. 

Example 2. A test well was started up and shut down after 9 hr. 
The dynamics of the pressure and flow variation corresponding to this 
disturbance of the stationary state are shown in Fig. 2, from which it 
is clear that the pressure variation almost ceased after 40 hr. From 
Fig. 2 we find 

co 

f 6pi( t )dt: t .205. t06 at sec, 
o 

i ~6qi(t) dt ~ 2t.10 ~ cm s . 

0 
Consequently, for this well 

a i i =  0.0574 at see/era 3. 

In this case, using aii , we can establish the productive potential 
of the well, i . e . ,  its output after a sufficiently long period of opera- 
tion. This is especially important for test wells in areas without facili- 
ties for storing the oil, where the productive potential cannot be es- 
tablished by operating them over an extended period. In these cases 
it is nsual to employ the formula 

2nkh APi 
qi --  !~ In (q/r~) 

Here, qi is the potential output of the well; Api is the depression at 
which it will be operated~ kh/~ is the hydraulic conductivity of the 
bed; rffr z are the radii of the supply contour and the well, respectively. 
The parameter kh/g is determined by a suitable express method; the 
ratio of the radii is found indirectly and rather arbitrarily. With this 
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approach the Dupuit formula may give oMy a very rough idea of the 
relative productive potential of the well. When the influence coeffi- 
cient is used these shortcomings can be avoided. In fact, the produc- 
tive potential can he determined from the formula 

qi = APl /a i i  �9 

In particular, for the test well in question 

qt = 348cm/sec=  30 mS/day at Apt = 20 a t .  

Owing to the lack of test data it is not possible to present examples 
of the determination of mutual influence coefficients (in the strict 
sense of the word). 

Clearly, the proposed method of determining the influence coeffi- 
cients is reasonably simple and can be recommended for practical use. 

REFERENCES 

1. V. A, Ditkin and A. P. Prudnikov, Operational Calculus [in 
Russian], Izd-vo Vysshaya shkola, 1966. 

2. G. L Barenhlatt, Yu. P. Zheltov, and I. N. Koehina, "Funda- 
mentals of the theory of percolation of homogeneous liquids through 
fissured rocks," PMM, vol. 24, no. 5, 1960. 

22 April 1968 Baku 

614 


